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Abstract

We investigate how the selection process of a leader affects team performance with
respect to social learning. We use a laboratory experiment in which an incentivized
guessing task is repeated in a star network with the leader at the center. Leader selection
is either based on competence, on self-confidence, or made at random. In our setting,
teams with random leaders do not underperform. They even outperform teams with
leaders selected on self-confidence. Hence, self-confidence can be a dangerous proxy for
competence of a leader. We show that it is the declaration of the selection procedure
which makes non-random leaders overly influential. To investigate the opinion dynamics,
we set up a horse race between several rational and näıve models of social learning. The
prevalent conservatism in updating, together with the strong influence of the team leader,
imply an information loss since the other team members’ knowledge is not sufficiently
integrated.
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Wisdom of Crowds

∗We thank Arun Advani, Sandro Ambuehl, Vincent Buskens, Arun Chandrasekhar, Syngjoo Choi, P.J.
Healy, Holger Herz, Matt Jackson, Bernhard Kittel, Michael Kosfeld, Jan Lorenz, Friederike Mengel, Claudia
Neri, Muriel Niederle, and Tanya Rosenblat for helpful comments. Berno Buechel gratefully acknowledges the
hospitality of the Economics Department of Stanford University and the financial support by the Fritz Thyssen
Foundation. Heiko Rauhut acknowledges support by the SNSF Starting Grant BSSGI0 155981.
†University of Fribourg, Department of Economics, Bd. de Pérolles 90, CH-1700 Fribourg, Switzerland; Tel.:
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1 Introduction

In our rapidly changing world, most modern organizations are embedded in highly dynamic

environments. For the management of an organization, the first essential step to successful

decision-making is the basic task of obtaining an accurate view of the environment.1 For

instance, this can be the foundation for defining a mission statement, as argued, e.g., in Bolton

et al. (2013). Recently, there have been a number of contributions showing that organizations

can improve their decision-making by harnessing the wisdom of crowds instead of using the

expertise of only a single individual (e.g., Surowiecki, 2004; Mannes, 2009; Keuschnigg and

Ganser, 2017). However, this literature has not analyzed whether a team’s ability to learn from

each other depends on characteristics of the team leader.

Given each team member’s initial level of information, the updated opinions’ accuracy

depends on the social learning process within the team. Many teams are organized such that

one person, the team leader, directly communicates with each team member, while the other

members often communicate only indirectly with each other – via the team leader. In this

paper, we address the question of how the selection of the team leader affects the performance

of social learning in the team. Is it necessary that the central person is the one with the highest

expertise? How does self-confidence affect the process of social learning? Should the selection

criterion be declared or rather hidden? Answering these questions can be informative for the

design of successful organizations.

To address these research questions, we set up a laboratory experiment in which subjects

are asked to answer incentivized estimation questions repeatedly. After each round, every

team member observes the leader’s guesses, while only the leader observes the guesses of all

members. We randomly allocate subjects into three treatments, which differ by whether the

leader is selected at random, by confidence or by expertise. We use real questions, while

previous experiments used highly stylized tasks such as guessing an average (or its sign) of

randomly drawn numbers (Çelen et al., 2010; Corazzini et al., 2012) or finding an abstract

true state (Choi et al., 2005; Brandts et al., 2015; Chandrasekhar et al., 2015; Grimm and

Mengel, 2018). Yet, studying real teams has severe endogeneity problems. For these reasons,

we explore the middle ground between theory-testing experiments and field data. We import a

method developed outside of economics (Lorenz et al., 2011; Rauhut and Lorenz, 2011), which is

increasingly used. Participants are asked to answer knowledge questions about vaguely known

facts for which the true answer is known (and could in principle easily be looked up, e.g., on

Wikipedia.com). Subjects are paid according to their answers’ accuracy and can communicate

their confidence levels. The latter aspect is missing in most other experiments of social learning

because it is simply not necessary to communicate confidence if signal quality is artificially made

common knowledge.2

1Indeed, disastrous decisions can often be traced back to management teams whose members are in disagree-
ment, or – what is arguably even worse – who unintendedly agree on a distorted view of reality.

2Think about the canonical framework with a binary state space and equally precise, conditionally inde-
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From a Bayesian perspective, selection of the leader does not matter due to efficient social

learning: As it will become clear below, Bayesian learners exchange their opinions such that

a consensus is reached independent of who is at the center of the communication network.3

In contrast, näıve social learning predicts consensus over time with a strong “bias” towards

the center’s initial opinion.4 Unless the leader is much better informed than the other team

members, this is suboptimal, giving the leader’s opinion too much weight. Hence, any leader

characteristic that further amplifies the weight of the leader’s opinion undermines performance.

As such, we study the leader’s self-confidence, as well as the public declaration of why the

leader was selected.

We assess performance by the proximity of a guess to the correct answer. In particular, we

measure the individual and the collective errors of the team’s guesses, and use a measure of the

wisdom of the crowds. We show that selection of leaders by accuracy or confidence does not

outperform random selection. Selection by confidence even undermines performance. Teams

with random leaders have the advantage that the non-leaders’ guesses are taken into account

more strongly when updating information, thereby improving the team’s performance. The

underlying reason is that declaring the leader as somewhat superior, be it in terms of past

performance or past confidence, induces team members to put more weight on the leader’s

opinion, making the team vulnerable to be misled by a single person.

For a deeper understanding of the opinion dynamics, we further develop rational and be-

havioral learning models which we compare to our data. Despite a long tradition of theoretical

insights and a growing body of empirical research, social learning is still far from being fully un-

derstood. Our comparisons between theoretical models and empirical data reveals that people

adapt their opinions insufficiently – providing evidence for what is called conservatism. While

conservatism is common in experiments on belief updating,5 our extension of social learning

models by conservatism is novel. Notice that it is entirely possible that subjects are conserva-

tive and at the same time pay too much attention to another subject’s opinion. For instance,

the declaration of the leader selected by confidence induces our subjects to put too high weights

on both, the leader and themselves, at the expense of the weight they can put on the other

pendent signals about the true state. If this is made common knowledge, it is clear how well informed each
agent is, and there is no need to communicate confidence. Our technology to provide a confidence level for each
estimate is somewhat similar to the literature that considers “tagging” pieces of information with their source
(Acemoglu et al., 2014; Phan et al., 2015).

3For instance, Gale and Kariv (2003), Rosenberg et al. (2009), and Mueller-Frank (2013) provide frameworks
for studying social learning among rational agents who are Bayesian updaters.

4For instance, DeGroot (1974), Friedkin and Johnsen (1990), DeMarzo et al. (2003), Golub and Jackson
(2010), and Acemoglu et al. (2010) study social learning among näıve agents.

5Experiments on belief updating frequently find that real people are more conservative updaters than the
theoretical model would predict (Möbius et al., 2011; Mannes and Moore, 2013; Ambuehl and Li, 2018), a
pattern that has already been summarized in a classic survey (Peterson and Beach, 1967): “when statistical
man and subjects start with the same prior probabilities for two population proportions, subjects revise their
probabilities in the same direction but not as much as statistical man does[.]” In this paper, we cannot study
the sources of conservative updating, but we can study well the consequences.
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group members.

Our paper entails three contributions. First, we provide empirical evidence for advantages

of random leader selection (also called sortition, demarchy, allotment, or aleatory democracy).

Despite a long tradition of discussion (e.g. Zeitoun et al., 2014; Frey and Osterloh, 2016), em-

pirical evidence is rare and mechanisms are unknown.6 We demonstrate that declaration of

non-random leader selection amplifies the weight of the leader’s opinion, which may result in

a loss because the wisdom of the crowds in the group is not harnessed. Second, we show that

overprecision (or judgemental overconfidence), which is the tendency to provide too narrow

confidence intervals for one’s estimates (e.g., Soll and Klayman, 2004; Moore and Healy, 2008;

Herz et al., 2014) is associated with lower team performance. This suggests that either over-

precise leaders should be generally avoided or that the trade-offs between the positive effects

of overprecise leaders (e.g., fostering coordination, Bolton et al., 2013; or motivating team

members, Gervais and Goldstein, 2007) and their negative impact on social learning should

be carefully balanced. Third, our paper makes a methodological contribution. By combining

experiments on factual questions with theories on social learning, we build a bridge between

neat theoretical frameworks and experimental set-ups that are less stylized. This demonstrates

that the assumption of common knowledge about signal precision is problematic. In reality,

people do not know the signal precision of their interaction partners, form expectations about

it and take into account with which confidence others’ opinions are communicated. Moreover,

behavioral biases such as overprecision, anchoring effects, or selection bias in information ac-

quisition can give rise to conservatism in updating. When incorporating this idea into both

näıve and rational models of social learning, we find that each model’s fit to the data increases,

although the distances to the true answers become larger.

2 Experimental Design

In a nutshell, participants in this experiment were asked to answer the same knowledge questions

multiple times in a row. The team leader could observe the previous answers of all team

members, while the team members could only observe the previous answer of the team leader.

Treatments differed by the selection criterion that determined the team leader.

The experiment was conducted at the University of Hamburg and consisted of eleven sessions

with a total of 176 subjects.7 In each session, participants were randomly allocated into groups

of four, which stayed fixed. The basic task was to answer a factual question and to provide

6One exception is the study by Haslam et al. (1998), which shows experimentally that randomly selected
leaders can enhance team performance in a task of deciding upon priorities in a hypothetical survival situation
(e.g., after a plane crash). The mechanism behind the effect, however, remains largely unclear. Interestingly,
they also observe that randomly selected leaders are, despite their superior performance, often perceived by
their team members as less effective than formally selected leaders.

7Participants were mostly undergraduate students from various disciplines; there was no restriction on the
pool of participants.
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a level of confidence for the answer. The closer the estimate was to the correct answer, the

more it was honored by game points which were translated into actual payouts, as detailed in

Table C.5 of Online Appendix C.8 On average, sessions lasted for one hour and participants

earned 9.50 Euros, which was close to the remuneration norm of the lab. The maximum feasible

payout was 48.20, while the minimum was the show-up fee of 5 Euros. This fact was explicitly

stated to the participants in order to highlight that the payout strongly depended on individual

performance. It was pointed out verbally and in the written instructions that the use of mobile

phones, smart phones, tablets, or similar devices would result in expulsion from the experiment

and exclusion from all payments.

Each session consisted of two phases: a selection phase (I) and a treatment phase (II), as

illustrated in Table 1. In phase I, each participant answered a set of eight different factual

questions. At the end of the experiment, one of these questions was randomly selected to be

payoff-relevant. In phase II, there was another set of eight questions, each of which was similar

to one of the questions of phase I. For instance, there was a question about voter turnout in

both phases of the experiment; similarly, there were two questions about the share of water

in certain vegetables. Questions were related to diverse topics and each question had already

been tested in previous experiments (Lorenz et al., 2011; Rauhut and Lorenz, 2011; Moussäıd

et al., 2013).9

In phase II, each question had to be answered six times in a row, i.e., in six consecutive

rounds. After each round, participants received feedback about the answers and confidence

statements provided by their group members according to a star network, but no other feedback.

The center of the star network could observe the previous answers and confidence statements

of all four team members; the three pendants could only observe the previous answer and

confidence of the center, in addition to their own. For each question of phase II, only one of

the six rounds was selected at random by the end of the session to be payoff-relevant. Hence,

there was no possibility to “hedge” risk with a portfolio of answers.

The actual treatments differed by the procedure that determined who within a group of

four became the center of the star network for phase II. In the baseline treatment T0, the

center was selected at random. In the accuracy treatment T1, the group member whose guess

on the similar question in phase I was closest to the correct answer was put into the central

position of the network. In the confidence treatment T2, this position was given to the group

member whose level of confidence for the guess on the similar question in phase I was highest.

Potential ties in accuracy or confidence were broken at random. For every question there could

be a different center in a given group even when the selection criterion was the same. Half of

all groups played the random treatment (T0) for four questions and the accuracy treatment

8The chosen payoff function has a convex shape. This provides incentives to report the guess that is most
likely the correct answer. Theoretically, an agent’s belief is a distribution on an interval and the payoff function
is designed to elicit the mode of this distribution, as we explain in subsection B.4.1 of Online Appendix B.

9The full list of questions can be found as Table C.1 in Online Appendix C.
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(T1) for the other four questions; the other half played the random treatment (T0) for four

questions and the confidence treatment (T2) for four questions.10 The selection procedure was

made transparent to the group members when the network for one question was formed, i.e.,

before the question was answered six times. During phase I, subjects did not know how decisions

in phase I could have an influence on phase II. Instructions for the first phase simply announced

that there would be a second phase with another set of instructions. This precluded strategic

behavior in phase I, e.g., to become the leader or to avoid becoming the leader in phase II.

While the answers to the questions were strongly incentivized, the confidence statements were

not directly incentivized. Hence, the statements of confidence in phase II can also be considered

as a mere communication technology.11

Table 1 gives an overview by showing the timeline and the number of observations. First,

in phase I, each group was confronted with eight questions in random order. Then, in phase II,

it was confronted with the eight corresponding questions in the same order. For the first four

questions in phase II, the group was in one treatment, for the latter four in another treatment.

In total, this yields 352 unique group-question pairs, of which 176 are in the random treatment

T0, 88 in the accuracy treatment T1, and 88 in the confidence treatment T2. Since one group-

question pair consists of four people who answer six times the same question (in phase II), our

total number of single answers is 8,448.

Sequence Phase I Phase II
S1 8Q 4Q under T0, 4Q under T1
S2 8Q 4Q under T0, 4Q under T2
S3 8Q 4Q under T1, 4Q under T0
S4 8Q 4Q under T2, 4Q under T0
Rounds 1 6



Treatment Groups x Questions
T0 Random 44 x 4 = 176
T1 Accuracy 22 x 4 = 88
T2 Confidence 22 x 4 = 88
Sum 352

Table 1: Overview of the timeline and number of observations. Each of the 44 groups played
one sequence. In a sequence, a group answered 8 questions once in phase I and 8 partner
questions six times in a row in phase II. This yields 176 group-question pairs in the random
treatment T0 and 88 group-question pairs in each of the two other treatments (T1 and T2).

Note that the number of observations in the random treatment T0 was chosen larger in

order to have a sufficient number of cases in which by chance the center happened to be the

most accurate or the most confident. These cases enable us to disentangle effects of leader

selection from effects of declaring of how the leader was selected.12

10The full schedule of which group played which question in which treatment is given by Table C.3 in Online
Appendix C.

11As we discuss in the next section, among rational agents there are indeed incentives to communicate
truthfully the level of confidence in our setting in order to foster optimal learning in the group. However, our
experimental results will not rely on the assumption that the confidence statements are truthful.

12A more detailed description of the experimental procedures can be found in Online Appendix C.
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3 Theoretical Background

In this section, we derive theoretical predictions about the behavior in our experiment. The

set-up is as follows. Let N = {1, 2, 3, 4} be the agents in one team. Let 1 be the center of the

star network and 2, 3, 4 the pendants. The basic task in our experiment is to provide guesses

on a specific question, the answer of which is a fraction. Hence, there is an unknown state of

the world θ ∈ Θ, which is the correct answer to the question at hand.13 Denote by xi(t) the

answer of agent i at time t. Denote by ci(t) the confidence statement of agent i at time t.

Time is discrete: t = 1, 2, ..., T , with T = 6 in phase II of the experiment. Accurate guesses are

incentivized by a payoff function π(ei(t)) that is weakly decreasing in the distance to the true

answer, ei(t) := |θ − xi(t)|. One out of six answers is finally drawn as payoff-relevant.

To make predictions about the participants’ guesses in phase II, we use two approaches: a

rational learning approach and a näıve learning approach.

3.1 Rational Learning Approach: Bayesian Updating

In the rational learning approach, we assume that agents maximize expected payoffs given their

beliefs and that beliefs are formed by Bayes rule.

Notice that a belief about the true answer is not a single number, but a probability dis-

tribution over the possible states (fi(t) : Θ → R). In the first round of guessing, t = 1,

agents are endowed with some private information, i.e., what they know about the question at

hand before interacting in the team. In the second round, each pendant i 6= 1 has observed

the guess x1(1) and the confidence statement c1(1) of the center and can use this to update

his belief. The center, on the other hand, has observed all guesses and confidence levels of

the first round to form her belief, which is the basis for her second-round guess x1(2).14 If

we assume that the guess and confidence level are sufficient to reconstruct an agent’s belief

and that the agents know how their private information is interrelated, then the center is

fully informed after the first round of guesses. In this case, she can make the optimal guess

x∗ := arg maxx∈ΘE[π(|θ − x|)|f1(1), ..., f4(1)], given the pieces of information in the team.

Since all agents have the same payoff function and pendants can observe the center’s guess

x1(2) = x∗, all agents make the same guess xi(t) = x∗ from round 3 on. This observation leads

to the following prediction.15

Prediction 1 (Bayes). In a model with common knowledge of rationality and common priors,

the following holds. If the answer and confidence statement of a linked team member in a star

13In the experiment, the correct answer is rounded and belongs to the finite set Θ = {0, 0.01, 0, 02, ..., 0.99, 1},
which we can also model as the interval Θ = [0, 1].

14For easier readability, we use the female form for the center and the male form for the pendants.
15A formal statement of this result can be found in Online Appendix B. There we introduce the general

framework (B.1), prove the proposition (B.2), and provide two specific examples how such a rational model
unfolds in our setting (B.4.1).
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network is sufficient to fully represent her private information, then the center learns once and

the pendants learn twice. (Learning refers here to information updates and improvements in

expectations.) Moreover, all team members will state the optimal answer x∗ in any round t ≥ 3,

independent of who is at the center of the star network.

Prediction 1 states that the selection of the team leader does not matter for the performance

of social learning, apart from the first two rounds (and, in fact, only apart from round two).

Moreover, it states that every agent provides the payoff-maximizing guess, which implies that

social learning is “efficient” in the sense of maximizing the sum of expected payoffs.16 However,

several of its underlying assumptions deserve further attention.

First, it is explicitly assumed that statements of guesses and confidence levels are sufficient

to recover beliefs. For this to be satisfied, the agent must know the other’s belief up to one or

two parameters. This is satisfied, for instance, in models assuming that beliefs follow a beta

distribution.17 Bayesian models with weaker assumptions could assume that agents also have

beliefs about the signal quality of the others and imperfectly learn over time both the available

private signals as well as their quality. Given the result by Aumann (1976), such a model is

expected to lead to more learning iterations, but to the same outcome in the long run.

Second, how exactly an agent updates depends on his higher order beliefs on how private

pieces of information are related to each other and how they are related to the truth. In

theoretical models, it is usually assumed that there is common knowledge about the prior

distribution of the true state, and about how private signals are drawn. In this experiment,

agents are confronted with real questions. Hence, the agents’ higher order beliefs about their

own and their fellow team members’ expertise can also depend on additional factors, such as the

particular question at hand or on the treatment. In particular, the accuracy treatment T1, i.e.,

that the center gave the most accurate answer to a similar question, or the confidence treatment

T2, i.e., that the center was the most confident on a similar question, might reveal something

about the agent’s ability that could be considered in the updating process. If anything, the

declaration of the treatment T1 or T2 can reveal additional information, which would lead

to better guesses, compared to the random treatment T0. To generate a prediction that is

much more in line with the theoretical models, Prediction 1 abstracts from this possibility by

assuming that there is common knowledge about how the private pieces of information are

related to each other and to the truth.18

Third and finally, the assumption of common knowledge of rationality need not be satisfied.

In sum, it cannot be expected that the requirements of Prediction 1 above are fully satisfied in

the experiment. Still, Prediction 1 gives us a clean baseline to compare the data to.

16Since efficiency here means that not only the sum but also each individual’s expected payoffs are maximal,
there are no incentives to deviate, e.g., by misrepresenting the own opinion or confidence level.

17We study such models in section 5. They are formally introduced in Online Appendix B.4.
18In the experiment, we did not induce a common prior because we used questions of real topics. Nevertheless,

we argue that models that assume a common prior and signals can contribute to our understanding of social
learning in real settings.
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3.2 Näıve Learning Approach: DeGroot Model

Previous experimental research on social learning has not always found strong support for

Bayesian learning, but often suggests that simple rules of updating, such as repeatedly taking

averages, fit the data well (Corazzini et al., 2012; Battiston and Stanca, 2015; Chandrasekhar

et al., 2015; Grimm and Mengel, 2018). We use their common modeling approach, which is often

named after Morris DeGroot, to generate an alternative prediction and to later specify models of

more näıve learning. The basic aspect of näıveté incorporated in this modeling approach is that

agents do not sufficiently account for the origin of information such that pieces of information

are used each time they reach an agent through the network. This behavioral bias is also called

“persuasion bias” (DeMarzo et al., 2003).

In the DeGroot model, the way people average the former guesses in their network neigh-

borhood is typically constant. In the star network, this means that peripheral agents always

provide a guess that is a mixture between the center’s and their own last guess, with constant

weights gi1 and gii on the two, while the center mixes all answers with some constant weights

g11, g12, g13, g14, which are also positive and sum up to one. Given the weights and the initial

answers xi(1), all consecutive answers xi(t) are fully determined. In particular, if G denotes the

(row-stochastic) 4× 4 matrix consisting of these entries gij and zeros at the remaining entries,

the agents’ updating can be written in vector and matrix notation as x(t) = Gx(t− 1). Hence,

the predicted guesses are x(t) = Gt−1x(1), for t = 1, 2, .... Each agent thus generically changes

guesses from round to round. Assuming that averaging weights are strictly positive is sufficient

for the conclusion that all agent’s guesses xi(t) converge for t→∞ to the same answer, which

we denote by xi(∞). Given that convergence is fast enough, xi(∞) is also a good prediction

for xi(6). For the star network, it can be shown that, for any i,

xi(∞) =
1

c

(
1x1(1) +

g12

g21

x2(1) +
g13

g31

x3(1) +
g14

g41

x4(1)

)
, (1)

with c = 1 + g12
g21

+ g13
g31

+ g14
g41

. The weights wi = 1
c
· g1i
gi1

measure long-term influence of an agent

i, which is called eigenvector centrality in network science since w′G = w′ (e.g. Friedkin, 1991;

DeMarzo et al., 2003; Golub and Jackson, 2010). As can be directly observed from Equation (1),

the center’s influence on the long-term answer is different from a pendant i’s influence, as long

as g1i
gi1
6= 1. In particular, the center has a stronger influence if the center’s weight on the

pendant g1i is lower than the pendant’s weight on the center gi1. This is a realistic assumption

since pendants have only the center’s guess to update from, while the center can distribute her

weight among three pendants.

To discuss performance of social learning in this model type, we need to make assumptions

about the relation between the initial guesses xi(1) and the truth θ, e.g., that initial guesses

are realizations of independent random variables that have the truth as expected values. For

any such probabilistic model and for any definition of the “optimal” guess x̂ given the initial

9



guesses, the approached value x(∞) and the optimal guess x̂ will only coincide if by coincidence

the averaging weights happen to be optimal in that sense. The same holds true for the guesses

and optimal guesses of early rounds, say round two. Even if the weights gij happen to produce

the optimal guess x̂ for some agent i in some round t, they will not have this property for every

agent and for every round. Hence, there is an inherent inefficiency in these näıve models of

social learning. The reason is that initial guesses of some participants are incorporated in the

change of answers more frequently than other team members’ guesses, while guessing weights

are constant. These observations lead to the following prediction.19

Prediction 2 (DeGroot). In the näıve model with constant and positive averaging weights,

the following holds. In a star network, every agent’s learning heavily depends on the network

positions, i.e., on who is the center. In particular, for gi1 > g1i, the center has a larger influence

on the long-run opinion than team member i. Generically, the center updates more than once

and the pendants update more than twice. Under weak conditions, the first round of updating

is learning (the expected error decreases), but for every notion of what is the optimal answer,

all team members will generally state suboptimal answers.

Prediction 2 states that the selection of the team leader heavily affects the performance of

social learning, and that social learning is generally “inefficient” in the sense of not maximizing

any function that is decreasing in the error of an agent’s guess. Given the weighting matrix G,

the näıve model is fully specified and provides a clear-cut prediction about all agents’ guesses

in all rounds. Typical specifications of G are studied in section 5.2.

Our treatments T1 and T2 mainly affect näıve social learning through the manipulation of

the network positions (who is at the center), but potentially also through the declaration of

the treatments. The second channel would be present if the averaging weights gij depended on

this declaration. In the empirical analysis, we will disentangle the effects of the manipulation

of the center – which does not matter according to Prediction 1, but is crucial according to

Prediction 2 – from potential effects of declaration (which can only be helpful in the rational

framework of Prediction 1, but could also be harmful in the näıve framework of Prediction 2).

4 Success of Social Learning

The two theoretical approaches lead to contradicting predictions. Therefore, it remains an

empirical question whether and how the selection of the leader affects the success of social

learning.

19A formal statement of this result can be found in Online Appendix B. There we introduce a probabilistic
framework and prove the proposition (B.3); and also provide two specific examples (B.5.1).
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4.1 Performance over Time

We measure performance both on the individual and on the collective level. We define the

individual error ei(t) by the absolute distance between answer xi(t) and truth θ. On the group

level, we use two complementary measures. We define the collective error by the error of the

mean of the four answers in the group ce(t) = |1
4

∑4
i=1 xi(t) − θ|. We define the (wisdom of)

crowd error by the degree as to whether the answers “bracket” the true value (following the

spirit of Lorenz et al., 2011). Accordingly, we define woce(t) = 0 if at most two answers are

strictly below or strictly above the correct answer; woce(t) = 1 if three answers are strictly

below or strictly above the correct answer; and woce(t) = 2 if the correct answer lies strictly

above or below all four answers in the group.20

Figure 1 depicts the levels of these performance measures over time by the three treatments.

Panels A-C show that the individual errors are on average between 10 and 20 percentage points

from the true answer and decrease over time. As intended, in the accuracy treatment T1,

selecting a center who was most accurate in answering a similar question (in phase I) leads

to centers who are significantly better in estimating the current question in the first round (of

phase II), while this is, notably, not the case in the confidence treatment T2. The centers’

individual errors reduce significantly in the random and confidence treatment, but not in the

accuracy treatment. By and large, this is consistent with rational learning models (which take

guess and confidence as a sufficient statistic for someone’s belief), i.e., that pendants learn

twice and centers once.21 Panels D-F show that collective errors also first decrease and then

settle.22 Taking these observations together, agents mostly learn in the first and second round

of updating.23 A similar pattern, albeit with a necessary change of sign, can be observed in

panels G-I for the crowd error: The crowd error increases over time with most of its changes

until round t = 3. Hence, in the final period the correct answer most frequently lies outside the

“bracket” of all provided answers. This observation is consistent with findings of Lorenz et al.

(2011).

Result 1. Individual and collective errors reduce over time. Centers learn once (except in the

accuracy treatment T1); pendants learn at least twice. Crowd errors increase over time.

20Thus, the crowd error measures whether the correct answer lies within the interval that is spanned by the
four answers, and if so, whether it also lies within the interval that is spanned by the two answers which are
contained in the interval of the two other answers. “Bracketing” is important when the decision maker assumes
that the truth lies in the interval spanned by the answers.

21Recall that we derived the predictions from the Bayesian approach using the assumption that guess and
confidence taken together are a sufficient statistic for someone’s belief. If this assumption fails, higher order
beliefs matter and more rounds of learning are expected.

22The apparent differences between treatments in the first round of the collective error are neither significant,
nor are they driving the subsequent results, as it can be shown.

23Learning cannot stem from having more time to think about a question since subjects who are not confronted
with any information about the guesses and confidence of others did not at all improve over time. We tested this
possibility with subjects who were randomly drawn from all potential participants in sessions whose number of
potential participants was not divisible by four, the size of our groups.
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Figure 1: Individual, collective, and crowd errors over time by treatments. Panels A, B, C
differentiate between centers (black) and pendants (gray). All confidence intervals are standard
95% confidence intervals.

Another view on the change of error over time is provided by Figure A.1 in the Appendix. It

shows for each question the distribution of the first round and the last round answers, indicating

a substantial heterogeneity between questions, for which we control in the subsequent analysis.
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4.2 Treatment Effects on Performance

To test for treatment effects, we run regressions with the three error measures as the dependent

variables and with treatment dummies as the independent variables. We focus our analysis on

investigating the effects of learning on the final period, which is period 6. The last period is

the most relevant, since it is the last period up to which learning can take place. In consecutive

robustness analyses, we also analyze performance for earlier rounds back to period t = 3, the

first round in which full learning can theoretically take place. Notice that the distribution of

(individual and collective) errors is heavily skewed. Taking the logarithm (e.g., log(ei(t)+1)) in

the regressions of individual and collective errors gives less weight to errors which are far away

from the truth and more weight to errors close to the true answer, such that the analysis will

not be driven by a few cases in which errors were huge, say, forty and more. For the variable

crowd error, which may attain values 0, 1, and 2, we use ordered logit.

(1) (2) (3)
individual error (log) collective error (log) crowd error

accuracy treatment (T1) 0.026 0.003 0.106
(0.30) (0.03) (0.39)

confidence treatment (T2) 0.144 0.179 0.739∗

(1.58) (1.78) (2.38)

intercept 2.164∗∗∗ 2.149∗∗∗

(22.65) (18.07)
intercept cut 1 -2.555∗∗∗

(-6.85)
intercept cut 2 -0.830∗

(-2.44)
N 1’408 352 352

Question dummy coefficients for 8 questions not shown

t statistics in parentheses; robust standard errors used; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2: Treatment effects on final errors: log individual error, log collective error, and wisdom
of crowd error (in period 6). Linear regression (models 1 and 2) and ordered logit regression
(model 3). The reference category is the random treatment T0.

Table 2 reports these models when controlling for each treatment T1 and T2 with a dummy

variable, while T0 is the reference category. We control for possible heterogeneity between

different questions by using corresponding dummy variables. Throughout all analyses, we

use robust standard errors. They are clustered for the combination of group and question to

account for inter-dependencies within a group when answering the same question. If selecting

the most accurate or the most confident enhances performance, then we should see a significant
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negative effect on the three errors. As Table 2 reveals, the accuracy treatment T1 and the

confidence treatment T2 do not outperform the random treatment T0. The coefficients are

mostly insignificant and in fact positive. There is even some indication that the confidence

treatment T2 underperforms compared with the random treatment T0. The latter effect is

significant at the 5% level for the crowd error, while the null hypothesis cannot be rejected

for collective error (p = 0.075) and individual error (p = 0.114).24 To further investigate

the potential negative effect of the confidence treatment T2 on the individual error, we rerun

the regression with the expected payoff in EUR as the dependent variable (see model (1) of

Table A.1 in the Appendix). It turns out that the effect is significantly negative (p < 5%) and

can be quantified as follows: Being in T2 in comparison to T0 reduces the expected utility

for the last round guess for every question by 0.17 EUR. This is a decrease of 36% from the

reference value 0.48 (see intercept of model 1 in Table A.1).

Result 2. Performance does not improve when the center is known to be the most accurate

(T1). Performance deteriorates when the center is known to be the most confident (T2).

To understand the mechanism behind these treatment effects of selecting the most accurate

or the most confident agent as a center, we distinguish between two aspects of each treatment,

the trait of the central agent and the declaration of how the central agent was selected.25 By

our experimental design we can disentangle the two effects, since in the random treatment T0 it

frequently happens by chance that the most accurate agent was selected as the center without

having the declaration of her accuracy, as is the case in the T1 treatment. The same applies

for confidence; in a number of cases, the most confident agent was randomly selected to be the

center in the random treatment T0.

Table 3 reports the results of the regressions when we control for the trait that the center is

the most accurate or the most confident in the group, such that the treatment dummies only

pick up the declaration effect. When the center happens to be the most confident or the most

accurate (in the corresponding question of phase I), the outcome measures tend to improve,

which is indicated by the negative sign of the (mostly non-significant) coefficients. When the

confidence of the center is declared to all group members, however, the performance is signifi-

cantly reduced. To quantify this effect, we rerun this regression using again the expected payoff

in EUR as the dependent variable (see model (2) of Table A.1 in the Appendix). Declaring

that the center was the most confident (T2), the expected payoff reduces by 0.26 EUR. This is

a decrease by 49% from 0.54 EUR in the case of having the most confident in the center in the

random treatment for the baseline question. The results are qualitatively similar for accuracy

of the center in the sense that the signs of the coefficients are the same, but we cannot reject

the null in that case, and the size of the effects is also smaller than for confidence.

24In the regression tables we report the t-statistics, which can be transformed into the p-values. The tests
are two-sided.

25For easier readability, we often only write the most confident or the most accurate center without explicitly
repeating that this refers to confidence and accuracy in the corresponding question of phase I.
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(1) (2) (3)
individual error (log) collective error (log) crowd error

accuracy-trait -0.110 -0.0716 -0.0477
(-1.13) (-0.69) (-0.15)

accuracy-declaration (T1) 0.117 0.0790 0.196
(1.01) (0.64) (0.53)

confidence-trait -0.106 -0.231∗ -0.474
(-1.19) (-2.21) (-1.74)

confidence-declaration (T2) 0.218∗ 0.335∗∗ 1.053∗∗

(1.98) (2.66) (2.90)

intercept 2.221∗∗∗ 2.241∗∗∗

(22.42) (18.81)
intercept cut 1 -2.735∗∗∗

(-7.31)
intercept cut 2 -0.999∗∗

(-2.92)
N 1’408 352 352

Question dummy coefficients for 8 questions not shown

t statistics in parentheses; robust standard errors used; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Treatment effects on final errors: log individual error, log collective error, and wisdom
of crowd error (in period 6). Linear regression (models 1 and 2) and ordered logit (model 3).
The reference category is the random treatment T0 restricted to the cases where the center has
neither the accuracy-trait nor the confidence-trait.

While Table 3 reports the effects for the final period after all learning has taken place,

Figure 2 illustrates robustness analyses of declaration effects when the regressions are run for

each period separately. We show periods 3 to 6, since these are the periods after which full

learning could happen and did take place according to the error dynamics (Figure 1).

The effect of declaring that the center is the most confident consistently increases the error

measures and thus reduces performance. The declaration of accuracy has the same tendency,

but the effects are smaller and insignificant.

Result 3. Declaration of confidence undermines performance.
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Figure 2: Treatment effects on errors: log individual error, log collective error, and wisdom of
crowd error (periods 3-6). Linear regressions, 95 % confidence intervals.

4.3 Social Influence

To analyze why the selection of the center may have a negative impact on performance, we

study to which extent agents within a group influence each other. For this purpose, we regress

the answer xi(t) of an agent i at time t ≥ 3 on his initial answer xi(1), as well as on the initial

answers of the other group members xj(1). In particular, a pendant’s answer is regressed on the

center’s initial answer, his own initial answer, and the mean of the other two pendants’ initial

answers. The center’s answer is regressed on the average of the pendants’ initial answers.

Tables A.2 and A.3 in the Appendix report the influence weights on t = 6 when estimating

them separately for each treatment. For instance, in the random treatment T0, a pendant’s

final answer is estimated as the convex combination of its initial answer with weight 56.7%, the

center’s initial answer with weight 26.7%, and the other pendants’ average initial answer with

weight 16.6%. There are several interesting observations contained in these tables. First, every

agent places much weight on his own initial opinion. In the rational model and the random

treatment, we would expect that on average this weight is 25%.26 Second, the weight individ-

uals place on their own initial opinion depends on the treatment. In the random treatment

T0, pendants place more weight on themselves, while centers place less weight on themselves.

Finally, the social influence by the other team members heavily depends on the treatment.

For pendants, the center’s weight was 26.7% in the random treatment T0, but 46.9% in the

confidence treatment T2; and similarly in the accuracy treatment T1.

The two aspects of a treatment, the trait of the center and the declaration of how the center

was selected, are then captured by the interaction effects of the corresponding dummy variables

with the influence weights in the regressions that pool the three treatments. These regressions

are reported in Tables A.4 and A.5 in the Appendix, their effects are illustrated in Figure 3.

26We will return to this observation when extending the social learning models in section 5.
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A positive effect of a certain dummy variable thereby means that the corresponding influence

weight is being increased by the corresponding treatment.
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Figure 3: Trait and declaration influence for pendants and centers. Gray accuracy, black
confidence treatments, 95 % confidence intervals. Panels A and C show how a pendant’s
answer in late periods is influenced by the center’s initial answer. Panels B and D show how a
center’s answer in late periods is influenced by the pendants’ initial answers.

When the center happens to be the most accurate or the most confident in phase I, but there

is no public declaration of this, then the pendants do not strongly respond (panel A), while the

center places significantly more weight on her own initial opinion and, accordingly, significantly
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less weight on the pendants’ opinions (panel B). In contrast, the declaration that the center is

the most confident or accurate does not affect the center’s weighting (panel D), but there is

a strong effect on the pendants (panel C). Declaring that the center is somehow special (the

most confident or accurate on a similar question) significantly increases the pendants’ weights

on the center’s initial opinions.

Result 4. The pendants place more weight on a center who is declared to be the most confident

or most accurate. The center places less weight on the pendants when she is the most confident

or the most accurate.

This result provides an explanation for the former results. Intuitively, placing more weight

to a single opinion has a negative effect on performance, except if this person is substantially

better informed than the others. In the accuracy treatment T1, this condition is satisfied to

some extent, such that the negative effect of placing too much weight on a single person and

the positive effect of placing more weight on a person who is better informed may balance each

other. Consequently, the performance in the accuracy treatment T1 need not differ from the

random treatment T0. In the case of the confidence treatment T2, the center is not substantially

better informed than the other group members, as can be seen from panel C in Figure 1. Hence,

putting more weight on her initial guesses only has the negative effect of insufficiently taking

into account the information of the others. This may lead to performing worse than under the

random treatment T0.

4.4 Overprecision

It is well-known that many people often suffer from a form of overconfidence called overprecision,

i.e., they report much too small confidence intervals when asked about a region where they

expect the true answer with a certain probability (a usual way is to ask where they expect

the answer in 90% of their guesses; see, e.g., Soll and Klayman, 2004; Moore and Healy, 2008;

Herz et al., 2014). In phase I of our experiment, we asked participants to provide such regions.

Therefore, we can compute for every participant the individual overprecision score simply by

counting how often that person provided a confidence interval that did not contain the true

answer. Thus, every participant is characterized by an overprecision score in {0, 1, . . . , 8}. As

Figure 4 reveals, many agents are overprecise. Their guess should only lie in 10% of the cases

outside of their provided 90% confidence interval. However, for most agents this happens in

more than two out of eight cases. The histogram also documents that there is substantial

heterogeneity in overprecision.

In model (3) of Table A.1 and Table A.6 in the Appendix, we analyze how the center’s

overprecision score as well as the average of the pendants’ overprecision scores impact the

group’s performance (on top of the previously found treatment effects). We first find that the

formerly discussed effects (in particular, the negative declaration effect of T2) remain significant
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Figure 4: Histogram of individual overprecision. The value 0 means that a subject has specified
for all eight knowledge questions a respective 90% confidence interval which encloses the true
value. The value 8 means that a subject has specified for all eight knowledge questions a
90% confidence interval which does not contain the true value. All values above 1 indicate
overprecision, since more than 10% of estimates fall out of the 90% confidence interval (i.e.,
91% of subjects are overprecise).

and are hence robust when controlling for overprecision. Second, we observe that the center’s

and the pendants’ overprecision coefficients are positive in Table A.6 and negative in Table A.1.

They are significant when the dependent variable is the expected payoff (Table A.1, model (3))

or the crowd error (Table A.6, model (3)). For the individual and the collective error, these

effects are not significant on the 5% level, with p-values that are all between 5% and 10% (as

reported in Table A.6). Taken together, we interpret this as sufficient evidence for the following

result.

Result 5. Both the center’s and the pendants’ overprecision are associated with lower perfor-

mance.

Tables A.1 and A.6 additionally indicate that the center’s overprecision score has a more

deteriorating impact on performance than a pendant’s overprecision score. Therefore, ceteris

paribus, it is best for the group’s performance if the least overprecise group member was the

center. On the other hand, overprecision is related to confidence, and the group member

most confident in phase I acting as center might improve the group’s performance when she

is not declared to be the most confident. Indeed, Table A.6 shows that, when controlling

for overprecision and for the declaration of confidence, the trait of being the most confident

significantly increases performance with respect to the collective error and the crowd error.

However, this effect is not significant for the individual error (model (1) in Table A.6, p = 0.140)

and the expected payoff (model (3) in Table A.1, p = 0.055). Thus, we conclude that the leader

personality that should optimally be selected may well be characterized as confident, but not
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as being overprecise. Hence, all results (Results 1-5) contribute to a coherent picture of how

the selection of the leader affects social learning.

In the next section, we connect the data more to the theory of social learning. As the

social influence analysis showed, both pendants and centers generally placed much weight on

their own initial opinion. When studying the learning behavior in the next section, we will

incorporate this behavioral aspect and study its consequences.

5 Learning Behavior

5.1 Specification and Extension of Learning Models

We now study how several model variations of both the rational and the näıve model class fit

to the data. Table 4 provides an overview of the considered models.27 The first four models

stem from the rational approach to social learning: the Standard Model supposes that all agents

in a group are equally well informed; the Sophisticated Model supposes that signal precision

can be derived from an agent’s guess and confidence statement. The next four models stem

from the näıve approach to social learning: in the DeMarzo et al. Model pendants put equal

weight on their own and the center’s opinion in any round of updating; in the Corazzini et

al. Model they put higher weight on the center’s guesses. Each model has a counter-part, in

which conservatism is introduced, indicated by “Plus”.28 For both model classes, introducing

conservatism not only reduces the adoption of others’ answers in the early rounds, but also alters

the prediction that consensus is reached or approached. Conservatism leads to the prediction

that the agents’ answers are swayed toward their own initial opinion. Taking this idea to the

extreme, we obtain the Sticking Model, in which every agent sticks to his initial guess without

changing it, a simple baseline model.

We implement each model such that all periods t ≥ 2 are predicted from values at t = 1.

We can not only assess how well these models fit to the data, but also how close the model

predictions are to the true answers.

5.2 Comparison of Models (Horse Race)

We assess the fit of each model by measuring the root of the mean squared error (RMSE)

between the model predictions for t ≥ 2 and the data points, Figure 5 displays the results.

The worst overall model fit is obtained by the baseline model, in which all agents stick

to their initial guess (Sticking Model). The best model fit is obtained by the “Plus” models,

which incorporate conservatism. In fact, every model considered has a larger RMSE than its

27The models are formally defined and characterized in sections B.4 and B.5 of Online Appendix B.
28In the rational learning models, we derive conservative behavior from the assumption of overprecision (cf.

subsection B.4.2 of Online Appendix B). In the näıve learning models, we base conservative behavior on a
framework from Friedkin and Johnsen (1990) (cf. subsection B.5.2).
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Model Class Weighting of others Conservatism Consensus
Standard rational equal no reached
Standard Plus rational equal yes no
Sophisticated rational according to confidence no reached
Sophisticated Plus rational according to confidence yes no
DeMarzo näıve equal no approached
DeMarzo Plus näıve equal yes no
Corazzini näıve according to degree no approached
Corazzini Plus näıve according to degree yes no
Sticking both no totally no

Table 4: Overview of model specifications.

“Plus” counterpart that incorporates conservatism. Considering the model fit for each round

separately, the conservatism aspect seems particularly helpful in predicting the first updates

(round 2), but the effect also persists to the latter rounds.

We can also differentiate model fit by treatment and by the role of being a center or a

pendant (see Figures A.2 and A.3 in the Appendix). The most important insight is that the

“Plus” models always fit better than their counter-parts. The result holds for all four considered

models, for all three treatments, for all rounds, and, apart from one exception, for both centers

and pendants.29 Hence, there is overwhelming evidence for the first part of our Result 6 below.

There are some additional observations to make in Figures A.2 and A.3 in the Appendix.

The best model fit in the random treatment T0 is obtained for both the DeMarzo et al. Plus

Model and the Standard-Plus Model with an RMSE of 7.88. Hence, these extensions of straight-

forward specifications of the näıve and the rational approach best predict the experimental data

in the baseline treatment. The Corazzini et al. Model, which predicts an immense influence

of the center, fits better in the accuracy T1 and confidence treatment T2 than in the random

treatment T0 and it fits well for the center, but not for the pendants. The reason is that the

center is given a high influence weight in the accuracy and confidence treatment, as well as in

the Corazzini et al. Model specification. Complementarily, the baseline model of sticking to

the initial guess fits much better in the random treatment T0 than in the others. This is a

clear indication that social influence is weakest in the random treatment T0 and stronger in

the accuracy treatment T1 and the confidence treatment T2. Given that social influence can

undermine the wisdom of crowds (Lorenz et al., 2011), this is an explanation for our result that

the crowd error is lowest under the random leader T0.

Finally, we can not only assess how these models fit to the data, but also how close the

model predictions are to the correct answers. Figure A.4 in the Appendix displays how far the

answers based on these models lie from the truth. This overview indicates that the introduction

29The exception is that the Corazzini et al. Model predicts the center’s guesses better than the Corazzini et
al. Plus Model. Recall that the center already has a high weight on herself in the Corazzini et al. Model model.
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Figure 5: Root mean squared errors (RMSE) of social learning models. “Standard” and “So-
phisticated” are models of rational learning; “DeMarzo” and “Corazzini” are models of näıve
learning. “Plus” models incorporate conservatism. Lower errors mean better fit between model
and data.

of conservatism does not improve the guesses, since the “Plus” models are further from the truth

than their counterparts. The same observation holds for all four considered models, for all three

treatments, for all rounds, and, apart from two exceptions, for both centers and pendants.30

Hence, there are two main findings from the horse race as summarized by the following result.

Result 6. Incorporating “conservatism” into both the rational and näıve models of social learn-

ing increases the fit between theoretical models and empirical data. It, however, decreases the

fit between the theoretical models and the correct answer.

The first statement strongly indicates that the extension of both the rational and the näıve

models of social learning by conservatism is not a mere theoretical exercise, but an empirically

relevant generalization. The second statement shows that conservatism is usually harmful.

However, it must be noted for this latter statement that conservatism has different effects on

different measures of performance. For instance, the “Plus” models perform better in terms of

the crowd error than their counterparts.31

30These manifold comparisons are not all reported in the paper. The exceptions are the centers in the rational
models (Standard Model and Sophisticated Model) who are left better off when no group member is conservative.

31This is highly plausible because conservatism leads to less convergence of opinions and can thereby help
“bracket” the truth. Hence, conservatism harms individual guesses, but works against the negative effect of
social influence that was uncovered in Lorenz et al. (2011).
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6 Conclusions

6.1 Summary and Conclusions

An organization’s fit to the environment depends on the management’s ability to assess the

state of the – usually dynamic – environment and to cope with uncertainty. We measure

team performance in this respect by assessing its ability to estimate correct answers to factual

questions. Having a team leader who is knowledgeable or confident in a given topic can in

principle be helpful. However, our experimental results show that communicating the leader’s

qualities can undermine this effect. Stressing the expertise or confidence of the leader triggers

other team members to put too much weight on the leader’s opinion. This narrows the opinion

space and diminishes the wisdom of the group substantially. Past accuracy (T1) and actual

ability are correlated such that there is a positive effect of an accurate leader, which, however,

is immediately undermined by the effect of declaring it. Past confidence (T2) is only weakly

correlated with actual ability such that the net effect is negative. In addition, most people suffer

from overprecision, a form of overconfidence that leads to conservatism in updating and hence

ignorance of the others’ valuable opinions. The two effects together imply that the own and

the leader’s opinion are heavily weighted at the expense of the other group members’ opinions,

resulting in an information loss.

We investigate the opinion dynamics by looking at different classes of learning models.

In particular, rational learning models in which social learning is efficient, independent of the

team leader, fall short of explaining our data. A better fit is obtained for näıve learning models,

which predict that the leader is more influential than any other team member. Among those,

the model that gives tremendous weight to the leader (Corazzini et al. Model) does not fit well

in the random treatment T0, but fits particularly well in the treatments T1 and T2, in which

the leader is not selected at random. Compared to all models, people tend to adapt too little

to the others’ opinions and are too confident in their own subjective estimates.32 To introduce

this pattern in the theory of social learning, we extend both rational and näıve models by

conservatism. With this twist, the fit of each model to the data increases substantially, despite

the fact that the model predictions move further away from the correct answers.

Given these results, the individually optimal updating rule is a complex matter: The optimal

weight on the own opinion does not only depend on the distribution of expertise in the team, but

also on the behavior of the other group members. In particular, if a team leader adequately

aggregates the information of the team, a team member’s conservatism prevents him from

learning from the others, but if a team leader inadequately aggregates the information of the

team, for instance because she is confident and does not listen to the other team members,

then it is very difficult for a team member to learn from the other team members. We observe

32The substantial amount of conservatism that we find in this paper can be partially due to the more realistic
setup with the lack of common knowledge about the others’ signal precisions.
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that the loss in efficiency in the confidence treatment stems from both sources, team leader’s

behavior and followers’ behavior: Confident team leaders do not sufficiently take into account

the valuable opinions of others; members of such a team give her a too high weight.

One conclusion is that our paper shows advantageous effects of random leader selection

(“sortition”). This political power selection rule has its roots in ancient Greece and has been

discussed by various names such as “demarchy” or “aleatory democracy” (Zeitoun et al., 2014;

Frey and Osterloh, 2016). While there have been discussions in the literature about the ad-

vantages and disadvantages of aleatory democracy, there is hardly empirical evidence. Our

empirical results demonstrate that random selection may be beneficial compared to selection

based on confidence, because then, the leader’s guesses get less and other group members’

guesses get more weight, taking more advantage of all information available to the team. In

reality, competence is often hard to measure. When the selection criterion and competence are

only weakly correlated, the leader’s opinion is likely to be overrated.

6.2 Limitations

The advantages of our experimental design come at the expense of certain limitations. First,

we focus on the ability of participants to learn from each other such that they find good

answers to estimation questions. However, sometimes it is less important to accurately assess

the environment, but to converge towards a common opinion. This may reduce conflicts and

helps to work on the same tasks and to support each other. For example, it has been shown that

a leader’s overprecision, or resoluteness, can foster coordination and cohesion (Bolton et al.,

2013). Hence, there is a trade-off between strong leadership and information loss. Second,

our experimental design focuses on social learning and does not mix it with the decision-

making process. Adding a decision-making stage (e.g., with a voting procedure), would increase

the experiment’s scope but distort measures for social learning, because participants would

anticipate the decision-making stage in the social learning stage. Third, by studying star

networks, we have not varied the network architecture, but only the network positions, which

for star networks boils down to the question of who is the leader. Follow-up research might

include a variety of network architectures and even consider endogenous network formation.

Finally, the external validity of this type of experiments depends on whether the interaction

among participants (who were virtually all university students) is sufficiently related to the

interaction among members of real teams in organizations. We have exogenously varied the

selection criterion of the leader. This resembles the perspective of the top management, deciding

about, e.g., the promotion criteria of more or less senior employees of the organization.

6.3 Practical Implications

Despite these limitations of our experiment, our findings do suggest several practical implica-

tions. First, when selecting a leader, self-confidence is a dangerous proxy for competence. In
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fact, real competence might be difficult to measure. What could be more easily assessed by

some guessing tasks is a candidate’s degree of overprecision, which might be more predictive

for team learning. Second, the way the selection criterion for the leader is communicated to a

team heavily affects the team’s interaction and performance. In particular, stressing that the

team leader was selected because of her (alleged) superiority increases her power, which might

push team learning out of balance. Third, we can validate that communication and social in-

fluence can be harmful for the wisdom of crowd effect (Lorenz et al., 2011), as the crowd error

increases over time. However, and importantly, we also show that social influence can foster

social learning. In particular, the individual error and the collective error improve over time.

Hence, interaction is not generally harmful.

Crucially, the effect of social influence on performance is moderated by the selection criterion

of who is in the powerful position in the communication network, and by the declaration of the

selection criterion. In conclusion, if teams want to utilize the wisdom of crowds within their

team, our results suggest that they should admit interaction and opinion exchange to counter

conservatism, but prevent central individuals from becoming overly influential.
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A Appendix: Additional Tables and Figures
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Figure A.1: Distribution of answers by questions. Black lines show the first round (t = 1);
dashed lines show the last round (t = 6). The correct answer is indicated by the vertical line.
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Figure A.2: Root mean squared errors (RMSE) of social learning models differentiated by
treatment. Lower errors mean better fit between model and data.
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Figure A.3: Root mean squared errors (RMSE) of different models by center and pendants
differentiated by center and pendants. Lower errors mean better fit between model and data.
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Figure A.4: Root mean squared errors (RMSE) of social learning models to the correct answer.
“Standard” and “Sophisticated” are models of rational learning; “DeMarzo” and “Corazzini”
are models of näıve learning. “Plus” models incorporate conservatism. Lower errors mean
better fit between model and truth.
Note: Restricting attention to the random treatment T0, the order of models according to their fit to the truth
is as follows: Standard Model 18.01, DeMarzo et al. Model 18.22, Sophisticated Model 18.83, Corazzini et al.
Model 18.92, Sophisticated-Plus Model 19.28, Standard-Plus Model 19.35, Corazzini et al. Plus Model 19.59,
DeMarzo et al. Plus Model 19.80, Sticking Model 22.51.
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(1) (2) (3)
Exp. Payoff Exp. Payoff Exp. Payoff

accuracy-trait 0.125 0.102
(1.23) (1.04)

accuracy-declaration (T1) -0.0900 -0.193 -0.189
(-1.02) (-1.57) (-1.59)

confidence-trait 0.126 0.186
(1.33) (1.93)

confidence-declaration (T2) -0.173∗ -0.261∗ -0.286∗

(-2.05) (-2.30) (-2.56)

overprecision center -0.0704∗∗

(-3.10)

overprecision pendants (avg.) -0.0909∗

(-2.37)

intercept 0.478∗∗∗ 0.412∗∗∗ 1.092∗∗∗

(5.85) (5.05) (5.44)
N 1’408 1’408 1’408

Question dummy coefficients for 8 questions not shown.

t statistics in parentheses; robust standard errors used; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.1: Treatment effects on expected payoff in EUR (for period 6). Linear regressions.
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(1) (2) (3)
T0 random T1 accuracy T2 confidence

own weight (pendant) 0.567∗∗∗ 0.405∗∗∗ 0.392∗∗∗

(16.23) (9.90) (9.40)

center’s weight 0.267∗∗∗ 0.449∗∗∗ 0.469∗∗∗

(7.86) (11.64) (8.10)

other pendants’ weight 0.166∗∗∗ 0.146∗∗∗ 0.139∗∗

(5.37) (3.92) (3.28)
N 528 264 264

t statistics in parentheses; robust standard errors used; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.2: Influence weights on pendants’ final answer, separately estimated for each treatment.
Regression of the pendant’s final answer (period 6) on the initial answers (period 1). Coefficients
forced to sum up to one.

(1) (2) (3)
T0 random T1 accuracy T2 confidence

own weight (center) 0.473∗∗∗ 0.659∗∗∗ 0.705∗∗∗

(9.04) (10.54) (9.23)

pendants’ weight 0.527∗∗∗ 0.341∗∗∗ 0.295∗∗∗

(10.06) (5.46) (3.86)
N 176 88 88

t statistics in parentheses; robust standard errors used; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.3: Influence weights on center’s final answer, separately estimated for each treatment.
Regression of the center’s final answer (period 6) on the initial answers (period 1). Coefficients
forced to sum up to one.
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(1)
pendant’s answer 6 (last period)

own weight (pendant) 0.577∗∗∗

(13.77)

center weight 0.244∗∗∗

(5.51)

other pendants’ weight 0.198∗∗∗

(4.78)
accuracy-trait × own -0.0234

(-0.41)

accuracy-trait × center 0.0693
(1.30)

accuracy-trait × other pendants -0.0393
(-0.82)

accuracy-declaration (T1) × own -0.140∗

(-2.04)

accuracy-declaration (T1) × center 0.120∗

(2.02)

accuracy-declaration (T1) × other pendants 0.0222
(0.38)

confidence-trait × own -0.00712
(-0.12)

confidence-trait × center 0.0317
(0.68)

confidence-trait × other pendants -0.0516
(-1.04)

confidence-declaration (T2) × own -0.152∗

(-2.23)

confidence-declaration (T2) × center 0.169∗∗

(2.64)

confidence-declaration (T2) × other pendants 0.0407
(0.70)

N 1’056

t statistics in parentheses; robust standard errors used; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.4: Influence weights on pendant’s final answer. Linear regression of the pendant’s final
answer (period 6) on the initial answers (period 1).
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(1)
center’s answer 6 (last period)

own weight (center) 0.400∗∗∗

(6.30)

pendants weight 0.643∗∗∗

(9.95)
accuracy-trait × own 0.158∗

(2.17)

accuracy-trait pendants -0.147
(-1.93)

accuracy-declaration (T1) × own 0.0402
(0.44)

accuracy-declaration (T1) × pendants -0.0393
(-0.38)

confidence-trait × own 0.139∗

(1.97)

confidence-trait × pendants -0.189∗

(-2.52)
confidence-declaration (T2) × own 0.108

(1.28)

confidence-declaration (T2) × pendants -0.0353
(-0.38)

N 352

t statistics in parentheses; robust standard errors used; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.5: Influence weights on center’s final answer. Linear regression of the center’s final
answer (period 6) on the initial answers (period 1).
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(1) (2) (3)
individual error (log) collective error (log) crowd error

accuracy-trait -0.0989 -0.0589 0.0143
(-1.02) (-0.56) (0.04)

accuracy-declaration (T1) 0.108 0.0709 0.185
(0.95) (0.58) (0.50)

confidence-trait -0.136 -0.264∗ -0.695∗

(-1.48) (-2.43) (-2.35)

confidence-declaration (T2) 0.238∗ 0.355∗∗ 1.215∗∗

(2.17) (2.83) (3.22)

overprecision center 0.0426 0.0453 0.216∗∗

(1.93) (1.92) (3.17)

overprecision pendants (avg.) 0.0804 0.0803 0.305∗

(1.94) (1.73) (2.09)

intercept 1.696∗∗∗ 1.706∗∗∗

(7.87) (6.98)
intercept cut 1 -0.637

(-0.85)
intercept cut 2 1.154

(1.54)
N 1’408 352 352

Question dummy coefficients for 8 questions not shown

t statistics in parentheses; robust standard errors used; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.6: Treatment effects on final errors: log individual error, log collective error and wisdom
of crowd error (in period 6). Linear regression (models 1 and 2) and ordered logit regression
(model 3). For models 1 and 2 the null cannot be rejected for the overprecision coefficients (at
the 5% significance level). The corresponding p values are 0.054 (overprecision center) and 0.053
(overprecision pendants) in model 1; and 0.056 (overprecision center) and 0.084 (overprecision
pendants) in model 2.
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